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Abstract 

We provide a logic for distributed computing that has the explanatory and technical 
power of constructive logics of computation. In particular, we establish a proof tech
nology that supports correct-by-construction programming based on the notion that 
concurrent processes can be extracted from proofs that specifications are achievable. 

1 Introduction 

1.1 Historical Context 

Models of computation have been important in mathematics since Greek geometry of 300 
BC, and perhaps for much longer. We call these models formal if they can be implemented 
by (idealized) machines. The sustained development of formal computing models and their 
implementation is much more recent , a 20th century activity with some foreshadowing by 
Babbage in the late 19th century. The main focus is digital computation, and it has been 
revolutionary- creating a computational aspect of every science and giving birth to a new 
discipline called computer science, starting with Thring in 1936 [Thr37]. Digital computation 
has even been proposed as a new foundation for physics [Hey02, Whe82, Whe89]. 

In the late 20th century, the Internet and other networks of machines made distributed 
computing a transformative global resource. Reasoning about networks required a new 
model of computation. The resulting model of distributed computation is enormously rich, 

*This material is based upon work supported by the National Science Foundation under Grant No. 
0208536. 
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and computer scientists are only beginning to create the concepts and tools to understand 
it deeply and exploit its potential in science, as well as in technology and commerce. 

One of the critical challenges researchers have faced in understanding every model of 
computation is creating a declarative language that relates the dynamic nature of computa
tion with the declarative basis of scientific theories. An illustrative example of this challenge 
already appears in Euclidean geometry. 

Euclid's propositions and postulates are a mixture of constructions and declarative state
ments . For example, he says essentially "given two points, we can draw a line (segment) 
connecting them". He declares that in any triangle, the length of any two sides is greater 
than that of the remaining one. Corresponding to this is the problem of making a con
struction, namely "given two line segments whose combined length is greater than a third, 
construct a triangle with these segments as sides." 

Euclidean geometry is a mixture of propositions, problems, postulates, and constructions. 
There are a finite number of basic postulates, and a finite number of atomic straight edge 
and compass construction methods (or schemes). This intuitive hybrid language sufficed for 
two thousand years. The geometric model of computing was far from formal , it was not 
even rigorous. Logicians then discovered how to make the declarative language rigorous, and 
eventually formal, using quantifiers, but "the quantifiers killed the constructions" . That is, 
instead of saying given points A and B we can construct a line segment between them, Hilbert 
said, given points A and B, there exists a line segment connecting them. Symbolically, 

VA, B : Points. 3L: Line.L = [AB]. 

1.2 Computational Logic 

It took a few decades to sort out a declarative language with computational meaning. L.E.J. 
Brouwer showed the way, and in due course a computational (or constructive) interpretation 
of formal logic was achieved, called the Brouwer, Kolmogorov, Heyting (BKH) interpretation. 
We will use this below. See the book [GTL89] for the BKH interpretation. 

This computational interpretation of the predicate calculus restored the balance between 
computation and assertion, and it became the basis for logics of computation that applied 
well to functional and procedural programs as demonstrated by deBruijn, Scott, Martin
Lof, Girard, Constable, Huet , Coquand, Paulin and others. These logics have enabled a very 
potent proof technology with applications both to mathematics and to software development. 
One of the key ideas in the logic of computation is the notion of proofs-as-programs [BC85], 
which will be of central concern here. 

1.3 The Logical Challenge of Distributed Computing 

The issue before us now is to find an adequate logic for distributed computing that has the 
explanatory and technical power of constructive logics of computation. In particular, we 
aspire to a proof technology that supports correct-by-construction programming based on 
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the notion that concurrent processes can be extracted from proofs that specifications are 
achievable. The goal has been elusive until now. 

Equally elusive in the case of networked computation is finding a declarative language for 
specifying distributed computing problems at very high levels of abstraction. Languages such 
as TLA+ [Lam03] describe computation at the level of execution models, and even at their 
most general, such models are not sufficiently abstract to apply well in all the circumstances 
we have in mind. 

We present a very abstract specification language which can be understood without direct 
reference to a computational model. As in the case of the language of Computational Type 
Theory (CTT [ABC+, CAB+86a, Con02]), there is a computation model behind it that is 
manifest in rules for reasoning. Likewise, in the setting of our computational theory of typed 
events (CTT-E), the inference rules will exploit the underlying computational interpretation. 
The computational interpretation through the inference rules is sufficiently strong that from a 
proof that a specification is achievable, we can automatically exact an executable distributed 
system. 

We have formalized the logic and its implementation in the Nuprl system [ACE+oo, 
CAB+86a] and the ScoRes distributed runtime environment [BG05] so that the creative 
steps of distributed system design and verification can be undertaken at a high logical level, 
and the detailed system programming can automated by the extractor/compiler. The ex
tractor/ compiler contains a large amount of detailed systems programming knowledge that 
is automatically applied. The designer can ignore many of these details. However, in a 
proof that Nuprl and ScoRes are correct, this knowledge must be made explicit. This 
has not yet been accomplished. Eventually, it could be done using formalizations of Java 
and of virtual machine models like JVM of the kind being formalized in Isabelle, HOL 
[GM93, NPW02, PN90, Pau88] . However, our focus is on the design and verification stage, 
and on the contributions possible at this level to computer science and to computing tech
nology and software development. 

Another aspect of our work that we only touch on briefly is the nature of formal in
teractive proof using the Nuprl 5 Logical Programming Environment. The entire theory of 
event structures on communication graphs has been formalized in Nuprl 5 by Mark Bickford 
and made available at the Nuprl web site www.nuprl.org. This theory contains over 2,500 
definitions and theorems and is completely formally checked. It is a large knowledge base 
for understanding distributed computing at a fine level of detail. 

The automated reasoning techniques implemented in the course of this formalization and 
supported by Stuart Allen and Richard Eaton, as well, represent a significant step in the 
implementation of the process of understanding distributed systems and designing protocols 
for communication, control, and security. This work is part of the long tradition begun by 
Newell, Simon, and Shaw [NSS57] of automating reasoning. Taken in its full extent, from 
pure mathematics to the verification of deployed systems, such work is one of the enduring 
contributions of computer science to intellectual history. 
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1.4 Formulas and problems 

Here is how we interpret the statements of a typed predicate logic. For atomic predicates to 
assert or solve P( t 1 , · · · , tn) means to provide a proof or a construction p( t 1 , · · · , tn) . 

If P, Q are problem statements (predicate formulas), then to assert 

P & Q means to find proofs or constructions p and q for P, Q respectively. 

P V Q means to find a proof or construction p for P and mark it as applying to 
Porto find a proof or construction q for Q and mark it as apply to Q. 

P =? Q means to find an effective procedure f that takes a proof or construction 
p for P and computes f(p) a proof or construction for Q. 

-, p means that there is no proof or construction for P. 

Vx: A.P means that there is an effective procedure f that takes any element of 
type A, say a, and computes a proof or construction f(a) for P [a/x]. 

3x: A.P means that we can construct an object a of type A and find a proof or 
construction Pa of P [ajx], taken together, < a,pa >solves this problem or 
proves this formula. 

2 Event Systems 

2.1 General 

Our theory is designed to account for the behavior of a wide variety of systems, from in
teracting computers on the Internet to interacting components in a single computer or in 
a brain. It can also describe cause and effect behavior in physical systems on the scale of 
galaxies or subatomic particles. The right theory can be a unifying force in the study of 
computation in all its many forms . Our theory is another step toward a comprehensive ac
count of distributed computing in its broadest sense. It is heavily influenced by the insights 
of Lamport [Lam78] and Winskel [Win80, Win89] . 

2.1.1 Events 

Events are the atomic units of the theory. They are the occurrences of atomic actions in 
space/time. Although they have duration, we don't speak of it , considering them to be 
instantaneous moments at which "things happen" . These events are causally ordered, e 
before e', denoted e < e'. As Lamport postulated, causal order is the structure of time. 

4 



We abstract away the duration of an event, which would be related to the physical time 
that the action requires. The structure of event space is determined by the organization of 
events into discrete loci, each a separate locus of actions through time at which events are 
sequentially ordered. The entities (locations) are separate; for example, they do not share 
state, they can be distinguished by messages. All actions take place at these locations (or 
by these entities). Actions are "located at these entities", and conversely, these entities are 
all (potentially) active. New entities can be created over time. At some locations, atomic 
actions produce random values. When seen as an entity, these loci can have properties such 
as physical coordinates. These are examples of observable properties of a locus of action. 

2.1.2 Observables 

We are interested in actions with observable results. Observables are known by identifiers 
and have types. For example, an observable might be a discrete value such as the spin of an 
electron, up or down; it might be the charge, positive or negative. We might observe the 
state of a device, on or off, or the values of a memory location, say an integer. The physical 
coordinates might be a quadruple of (computable) real numbers . The list of observables of 
an entity is its state. 

Interaction among entities is determined by connections among them called communi
cation links or interaction channels. These links form a discrete interaction topology. We 
allow that each entity is connected, perhaps by multiple links, to every other entity. The 
link structure can be dynamic. 

Interaction is achieved by messages communicated on links. At each locus, every event 
can emit a signal (send a message). Sending a signal along a link to an entity will eventually 
cause that signal to be received by that entity, so the links are reliable, and reception cannot 
be blocked by the receiver . The action of detecting (or receiving) a signal is called an external 
event at the locus of reception. In addition, there can be internal events as the result of 
internal actions of the entity. All events are either external or internal, and either kind can 
emit a signal. The actions have names in the type Action. 

Internal events can have preconditions or guards that determine the conditions under 
which they take place. The externally caused actions are not guarded; they happen whenever 
the signal arrives. 

2.1.3 Computation and message automata 

The universe is run by computation. It is the force that makes things happen. Computation 
is digital, built from discrete atomic actions. We can build the entire edifice on functional 
update of the state and of the message queues on the interaction links. The form of a state 
update is s' := f(s, v) where s is the current state, v is a signal received or the value of 
an action and s' is the new state. We take arbitrary computable functions f as possible 
updating steps. 

Ultimately we will describe the entities as automata, called message automata. Depend
ing on the resolution at which we describe them, they can be as simple as atomic particles 
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or as complex as separate distributed systems, such as agents (human or robotic) or even 
large systems like a planet. 

2.2 Event structures with order (EOrder) 

It is possible to say a great deal without mentioning values, observables, and states; so we 
first axiomatize event structures with order but without values or states. 

2.2.1 Signature of EOrder 

The signature of these events requires two types, and two partial functions. The types are 
discrete, which means that their defining equalities are decidable. We assume the types are 
disjoint. We define[]) as {T: Type I Vx , y: T. x = yin TV --, (x =yin T)}, the large type 
of discrete types. 

Events with order (EOrder) 

E:[]) 

Loc:]]J) 

pred?: E---+ E + Loc 
sender?: E---+ E + Unit 

The function pred? finds the predecessor event of e if e is not the first event at a locus or it 
returns the location if e is the first event. The sender?(e) value is the event that sent e if e 
is a receive, otherwise it is a unit. We can define the location of an event by tracing back 
the predecessors until the value of pred belongs to Loc. This is a kind of partial function on 
E . From pred? and sender? we can define these Boolean valued functions: 

first(e) = ifis_left (pred?(e)) then true else false 

rev?( e) = if is_left (sender?( e)) then true else false 

The relation is_left applies to any disjoint union type A + B and decides whether an element 
is in the left or right disjunct (see Naive Computational Type Theory [Con02]) . We can 
"squeeze" considerable information out of the two functions pred? and sender?. In addition 
to first and rev?, we can define the order relation 

pred!(e, e') == (--, first(e') =?- e = pred?(e')) V e = sender(e') . 

We will axiomatize this as a strongly well-founded order relation. 

The transitive closure of pred! is Lamport's causal order relation denoted e < e'. We can 
prove that it is also strongly well-founded and decidable; first we define it . 

The nth power of relation R on type T, is defined as 
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xR0 y iff x = y in T 
xRny iff ::lz : T. xRz & zRn- ly 

The transitive closure of R is defined as xR*y iff ::Jn: N"+-(xRny). 

Causal order is x pred!*y, abbreviated x < y. 

2.2.2 Axioms for event structures with order (EOrder) 

There are only three axioms that constrain event systems with order beyond the typing 
constraints. 

Axiom 1 If event e emits a signal, then there is an event e' such that for any event e" which 
receives this signal, e" = e' or e" < e' . 

Ve: E. ::Je' : E. 'lie" : E. ( rcv?(e") & sender?(e") = e)=? (e" = e' V e" <e) 

Axiom 2 The pred? function is injective. 

Ve, e' :E. loc(e) = loc(e') ==?- pred?(e) = pred?(e') ==?- e = e' 

Axiom 3 The pred! relation is strongly well founded. 

3 f: E---+ N. Ve, e': E.pred!(e, e') =? f(e) < f(e') 

To define f in Axiom 3 we arrange a linear "tour" of the event space. We can imagine 
that space as a subset of N x N where N numbers the locations and discrete time. Events 
happen as we examine them on this tour, so a receive can't happen until we activate the 
send. Local actions are linearly ordered at each location. Note, we need not make any 
further assumptions. 

We can define the finite list of events before a given event at a location, namely 

before(e) == if first(e) then [] 
else pred?(e) append before (pred? (e)) 

Similarly, we can define the finite tree of all events causally before e , namely 

prior( e) == if first( e) then[] 
else if rev?( e) 
then < e,prior(sender?(e)),prior(pred?(e)) > 
else < e,prior(pred?(e)) > 
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2.2.3 Properties of events with order 

We can prove many interesting facts about events with order. The basis for many of the 
proofs is induction over causal order. We prove this by first demoq.strating that causal order 
is strongly well founded. 

Theorem 1 3f : E--> N. Ve, e' : E . e < e' ==* f(e) < f(e') 

The argument is simple. Let x <J y denote pred!(x , y) and let x <Jn y denote pred!n(x , y). 
Recall that x <Jn+l y iff 3z : E. x <J z & z <Jn y . From Axiom 3 there is function fo : E--> N 
such that x <J y implies fo(x) < fo( z ). By induction on N we know that fo(z) < fo(y). From 
this we have fa( x) < fo(Y). So the function fo satisfies the theorem. The simple picture of 
the argument is 

X <J Z1 <J Z2 <J . . . <J Zn <J y 

so 

We leave the proof of the following induction principle to the reader. 

Theorem 2 \:IP : E--> Prop. Ve': E. ((Ve: E. e < e'. P(e)) "'* P(e')) =? \:le: E. P(e) 

Using induction we can prove that causal order is decidable. 

Theorem 3 Ve, e' : E. e < e' V--, (e < e') 

We need the lemma. 

Theorem 4 Ve, e': E. (e <J e' V --, (e <J e')) 

This is trivial from the fact that pred!(x , y) is defined using a decidable disjunction of 
decidable relations, recall 

x <J y is pred!(x, z ) 

and 
pred!(x, y) =--, first(y) =? x = pred?(y) V x = sender?(y) . 

The local order given by pred? is a total order. Define x <toe y is x = pred?(y). 

Theorem 5 \:lx , y: E. (x <toe y V X= y V y <toe x) 
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