
A Causal Logic of Events in Formalized Computational
Type Theory *

Mark Bickforda and Robert L. Constableb

aATC, NY
b Cornell University, Department of Computer Science

Abstract

We provide a logic for distributed computing that has the explanatory and technical
power of constructive logics of computation. In particular, we establish a proof tech
nology that supports correct-by-construction programming based on the notion that
concurrent processes can be extracted from proofs that specifications are achievable.

1 Introduction

1.1 Historical Context

Models of computation have been important in mathematics since Greek geometry of 300
BC, and perhaps for much longer. We call these models formal if they can be implemented
by (idealized) machines. The sustained development of formal computing models and their
implementation is much more recent , a 20th century activity with some foreshadowing by
Babbage in the late 19th century. The main focus is digital computation, and it has been
revolutionary- creating a computational aspect of every science and giving birth to a new
discipline called computer science, starting with Thring in 1936 [Thr37]. Digital computation
has even been proposed as a new foundation for physics [Hey02, Whe82, Whe89].

In the late 20th century, the Internet and other networks of machines made distributed
computing a transformative global resource. Reasoning about networks required a new
model of computation. The resulting model of distributed computation is enormously rich,

*This material is based upon work supported by the National Science Foundation under Grant No.
0208536.

1

and computer scientists are only beginning to create the concepts and tools to understand
it deeply and exploit its potential in science, as well as in technology and commerce.

One of the critical challenges researchers have faced in understanding every model of
computation is creating a declarative language that relates the dynamic nature of computa
tion with the declarative basis of scientific theories. An illustrative example of this challenge
already appears in Euclidean geometry.

Euclid's propositions and postulates are a mixture of constructions and declarative state
ments . For example, he says essentially "given two points, we can draw a line (segment)
connecting them". He declares that in any triangle, the length of any two sides is greater
than that of the remaining one. Corresponding to this is the problem of making a con
struction, namely "given two line segments whose combined length is greater than a third,
construct a triangle with these segments as sides."

Euclidean geometry is a mixture of propositions, problems, postulates, and constructions.
There are a finite number of basic postulates, and a finite number of atomic straight edge
and compass construction methods (or schemes). This intuitive hybrid language sufficed for
two thousand years. The geometric model of computing was far from formal , it was not
even rigorous. Logicians then discovered how to make the declarative language rigorous, and
eventually formal, using quantifiers, but "the quantifiers killed the constructions" . That is,
instead of saying given points A and B we can construct a line segment between them, Hilbert
said, given points A and B, there exists a line segment connecting them. Symbolically,

VA, B : Points. 3L: Line.L = [AB].

1.2 Computational Logic

It took a few decades to sort out a declarative language with computational meaning. L.E.J.
Brouwer showed the way, and in due course a computational (or constructive) interpretation
of formal logic was achieved, called the Brouwer, Kolmogorov, Heyting (BKH) interpretation.
We will use this below. See the book [GTL89] for the BKH interpretation.

This computational interpretation of the predicate calculus restored the balance between
computation and assertion, and it became the basis for logics of computation that applied
well to functional and procedural programs as demonstrated by deBruijn, Scott, Martin
Lof, Girard, Constable, Huet , Coquand, Paulin and others. These logics have enabled a very
potent proof technology with applications both to mathematics and to software development.
One of the key ideas in the logic of computation is the notion of proofs-as-programs [BC85],
which will be of central concern here.

1.3 The Logical Challenge of Distributed Computing

The issue before us now is to find an adequate logic for distributed computing that has the
explanatory and technical power of constructive logics of computation. In particular, we
aspire to a proof technology that supports correct-by-construction programming based on

2

the notion that concurrent processes can be extracted from proofs that specifications are
achievable. The goal has been elusive until now.

Equally elusive in the case of networked computation is finding a declarative language for
specifying distributed computing problems at very high levels of abstraction. Languages such
as TLA+ [Lam03] describe computation at the level of execution models, and even at their
most general, such models are not sufficiently abstract to apply well in all the circumstances
we have in mind.

We present a very abstract specification language which can be understood without direct
reference to a computational model. As in the case of the language of Computational Type
Theory (CTT [ABC+, CAB+86a, Con02]), there is a computation model behind it that is
manifest in rules for reasoning. Likewise, in the setting of our computational theory of typed
events (CTT-E), the inference rules will exploit the underlying computational interpretation.
The computational interpretation through the inference rules is sufficiently strong that from a
proof that a specification is achievable, we can automatically exact an executable distributed
system.

We have formalized the logic and its implementation in the Nuprl system [ACE+oo,
CAB+86a] and the ScoRes distributed runtime environment [BG05] so that the creative
steps of distributed system design and verification can be undertaken at a high logical level,
and the detailed system programming can automated by the extractor/compiler. The ex
tractor/ compiler contains a large amount of detailed systems programming knowledge that
is automatically applied. The designer can ignore many of these details. However, in a
proof that Nuprl and ScoRes are correct, this knowledge must be made explicit. This
has not yet been accomplished. Eventually, it could be done using formalizations of Java
and of virtual machine models like JVM of the kind being formalized in Isabelle, HOL
[GM93, NPW02, PN90, Pau88] . However, our focus is on the design and verification stage,
and on the contributions possible at this level to computer science and to computing tech
nology and software development.

Another aspect of our work that we only touch on briefly is the nature of formal in
teractive proof using the Nuprl 5 Logical Programming Environment. The entire theory of
event structures on communication graphs has been formalized in Nuprl 5 by Mark Bickford
and made available at the Nuprl web site www.nuprl.org. This theory contains over 2,500
definitions and theorems and is completely formally checked. It is a large knowledge base
for understanding distributed computing at a fine level of detail.

The automated reasoning techniques implemented in the course of this formalization and
supported by Stuart Allen and Richard Eaton, as well, represent a significant step in the
implementation of the process of understanding distributed systems and designing protocols
for communication, control, and security. This work is part of the long tradition begun by
Newell, Simon, and Shaw [NSS57] of automating reasoning. Taken in its full extent, from
pure mathematics to the verification of deployed systems, such work is one of the enduring
contributions of computer science to intellectual history.

3

1.4 Formulas and problems

Here is how we interpret the statements of a typed predicate logic. For atomic predicates to
assert or solve P(t 1 , · · · , tn) means to provide a proof or a construction p(t 1 , · · · , tn) .

If P, Q are problem statements (predicate formulas), then to assert

P & Q means to find proofs or constructions p and q for P, Q respectively.

P V Q means to find a proof or construction p for P and mark it as applying to
Porto find a proof or construction q for Q and mark it as apply to Q.

P =? Q means to find an effective procedure f that takes a proof or construction
p for P and computes f(p) a proof or construction for Q.

-, p means that there is no proof or construction for P.

Vx: A.P means that there is an effective procedure f that takes any element of
type A, say a, and computes a proof or construction f(a) for P [a/x].

3x: A.P means that we can construct an object a of type A and find a proof or
construction Pa of P [ajx], taken together, < a,pa >solves this problem or
proves this formula.

2 Event Systems

2.1 General

Our theory is designed to account for the behavior of a wide variety of systems, from in
teracting computers on the Internet to interacting components in a single computer or in
a brain. It can also describe cause and effect behavior in physical systems on the scale of
galaxies or subatomic particles. The right theory can be a unifying force in the study of
computation in all its many forms . Our theory is another step toward a comprehensive ac
count of distributed computing in its broadest sense. It is heavily influenced by the insights
of Lamport [Lam78] and Winskel [Win80, Win89] .

2.1.1 Events

Events are the atomic units of the theory. They are the occurrences of atomic actions in
space/time. Although they have duration, we don't speak of it , considering them to be
instantaneous moments at which "things happen" . These events are causally ordered, e
before e', denoted e < e'. As Lamport postulated, causal order is the structure of time.

4

We abstract away the duration of an event, which would be related to the physical time
that the action requires. The structure of event space is determined by the organization of
events into discrete loci, each a separate locus of actions through time at which events are
sequentially ordered. The entities (locations) are separate; for example, they do not share
state, they can be distinguished by messages. All actions take place at these locations (or
by these entities). Actions are "located at these entities", and conversely, these entities are
all (potentially) active. New entities can be created over time. At some locations, atomic
actions produce random values. When seen as an entity, these loci can have properties such
as physical coordinates. These are examples of observable properties of a locus of action.

2.1.2 Observables

We are interested in actions with observable results. Observables are known by identifiers
and have types. For example, an observable might be a discrete value such as the spin of an
electron, up or down; it might be the charge, positive or negative. We might observe the
state of a device, on or off, or the values of a memory location, say an integer. The physical
coordinates might be a quadruple of (computable) real numbers . The list of observables of
an entity is its state.

Interaction among entities is determined by connections among them called communi
cation links or interaction channels. These links form a discrete interaction topology. We
allow that each entity is connected, perhaps by multiple links, to every other entity. The
link structure can be dynamic.

Interaction is achieved by messages communicated on links. At each locus, every event
can emit a signal (send a message). Sending a signal along a link to an entity will eventually
cause that signal to be received by that entity, so the links are reliable, and reception cannot
be blocked by the receiver . The action of detecting (or receiving) a signal is called an external
event at the locus of reception. In addition, there can be internal events as the result of
internal actions of the entity. All events are either external or internal, and either kind can
emit a signal. The actions have names in the type Action.

Internal events can have preconditions or guards that determine the conditions under
which they take place. The externally caused actions are not guarded; they happen whenever
the signal arrives.

2.1.3 Computation and message automata

The universe is run by computation. It is the force that makes things happen. Computation
is digital, built from discrete atomic actions. We can build the entire edifice on functional
update of the state and of the message queues on the interaction links. The form of a state
update is s' := f(s, v) where s is the current state, v is a signal received or the value of
an action and s' is the new state. We take arbitrary computable functions f as possible
updating steps.

Ultimately we will describe the entities as automata, called message automata. Depend
ing on the resolution at which we describe them, they can be as simple as atomic particles

5

or as complex as separate distributed systems, such as agents (human or robotic) or even
large systems like a planet.

2.2 Event structures with order (EOrder)

It is possible to say a great deal without mentioning values, observables, and states; so we
first axiomatize event structures with order but without values or states.

2.2.1 Signature of EOrder

The signature of these events requires two types, and two partial functions. The types are
discrete, which means that their defining equalities are decidable. We assume the types are
disjoint. We define[]) as {T: Type I Vx , y: T. x = yin TV --, (x =yin T)}, the large type
of discrete types.

Events with order (EOrder)

E:[])

Loc:]]J)

pred?: E---+ E + Loc
sender?: E---+ E + Unit

The function pred? finds the predecessor event of e if e is not the first event at a locus or it
returns the location if e is the first event. The sender?(e) value is the event that sent e if e
is a receive, otherwise it is a unit. We can define the location of an event by tracing back
the predecessors until the value of pred belongs to Loc. This is a kind of partial function on
E . From pred? and sender? we can define these Boolean valued functions:

first(e) = ifis_left (pred?(e)) then true else false

rev?(e) = if is_left (sender?(e)) then true else false

The relation is_left applies to any disjoint union type A + B and decides whether an element
is in the left or right disjunct (see Naive Computational Type Theory [Con02]) . We can
"squeeze" considerable information out of the two functions pred? and sender?. In addition
to first and rev?, we can define the order relation

pred!(e, e') == (--, first(e') =?- e = pred?(e')) V e = sender(e') .

We will axiomatize this as a strongly well-founded order relation.

The transitive closure of pred! is Lamport's causal order relation denoted e < e'. We can
prove that it is also strongly well-founded and decidable; first we define it .

The nth power of relation R on type T, is defined as

6

xR0 y iff x = y in T
xRny iff ::lz : T. xRz & zRn- ly

The transitive closure of R is defined as xR*y iff ::Jn: N"+-(xRny).

Causal order is x pred!*y, abbreviated x < y.

2.2.2 Axioms for event structures with order (EOrder)

There are only three axioms that constrain event systems with order beyond the typing
constraints.

Axiom 1 If event e emits a signal, then there is an event e' such that for any event e" which
receives this signal, e" = e' or e" < e' .

Ve: E. ::Je' : E. 'lie" : E. (rcv?(e") & sender?(e") = e)=? (e" = e' V e" <e)

Axiom 2 The pred? function is injective.

Ve, e' :E. loc(e) = loc(e') ==?- pred?(e) = pred?(e') ==?- e = e'

Axiom 3 The pred! relation is strongly well founded.

3 f: E---+ N. Ve, e': E.pred!(e, e') =? f(e) < f(e')

To define f in Axiom 3 we arrange a linear "tour" of the event space. We can imagine
that space as a subset of N x N where N numbers the locations and discrete time. Events
happen as we examine them on this tour, so a receive can't happen until we activate the
send. Local actions are linearly ordered at each location. Note, we need not make any
further assumptions.

We can define the finite list of events before a given event at a location, namely

before(e) == if first(e) then []
else pred?(e) append before (pred? (e))

Similarly, we can define the finite tree of all events causally before e , namely

prior(e) == if first(e) then[]
else if rev?(e)
then < e,prior(sender?(e)),prior(pred?(e)) >
else < e,prior(pred?(e)) >

7

2.2.3 Properties of events with order

We can prove many interesting facts about events with order. The basis for many of the
proofs is induction over causal order. We prove this by first demoq.strating that causal order
is strongly well founded.

Theorem 1 3f : E--> N. Ve, e' : E . e < e' ==* f(e) < f(e')

The argument is simple. Let x <J y denote pred!(x , y) and let x <Jn y denote pred!n(x , y).
Recall that x <Jn+l y iff 3z : E. x <J z & z <Jn y . From Axiom 3 there is function fo : E--> N
such that x <J y implies fo(x) < fo(z). By induction on N we know that fo(z) < fo(y). From
this we have fa(x) < fo(Y). So the function fo satisfies the theorem. The simple picture of
the argument is

X <J Z1 <J Z2 <J . . . <J Zn <J y

so

We leave the proof of the following induction principle to the reader.

Theorem 2 \:IP : E--> Prop. Ve': E. ((Ve: E. e < e'. P(e)) "'* P(e')) =? \:le: E. P(e)

Using induction we can prove that causal order is decidable.

Theorem 3 Ve, e' : E. e < e' V--, (e < e')

We need the lemma.

Theorem 4 Ve, e': E. (e <J e' V --, (e <J e'))

This is trivial from the fact that pred!(x , y) is defined using a decidable disjunction of
decidable relations, recall

x <J y is pred!(x, z)

and
pred!(x, y) =--, first(y) =? x = pred?(y) V x = sender?(y) .

The local order given by pred? is a total order. Define x <toe y is x = pred?(y).

Theorem 5 \:lx , y: E. (x <toe y V X= y V y <toe x)

8

References

[ABC+] Stuart F. Allen, Mark Bickford, Robert Constable, Richard Eaton, Christoph
Kreitz, Lori Lorigo, and Evan Moran. Innovations in computational type theory
using Nuprl. To appear in Journal of Applied Logic 2006.

[Abr94] S. Abramsky. Proofs as processes. Journal of Theoretical Computer Science,
135(1):5- 9, 1994.

[Abr95] Uri Abraham. On interprocess communication and the implementation of
multi-writer atomic registers. Journal of Theoretical Computer Science,
149:257-298, 1995.

[Abr99] Uri Abraham. Models for Concurrency, volume 11 of Algebra, Logic and Ap
plications Series. Gordon and Breach, 1999.

[AbrOO] S. Abramsky. Process realizability. In F. L. Bauer and R. Steinbriiggen, editors,
Foundations of Secure Computation: Proceedings of the 1999 Marktoberdorf
Summer School, pages 167-180. lOS Press, 2000.

[ACE+oo] Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz, and Lori
Lorigo. The Nuprl open logical environment. In David McAllester, editor, Pro
ceedings of the rfh International Conference on Automated Deduction, volume
1831 of Lecture Notes in Artificial Intelligence, pages 170- 176. Springer Verlag,
2000.

[AHR02] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving invariants
of 1/0 automata with TAME. Automated Software Engineering, 9(3):201- 232,
2002.

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Conference Record
of the 17th Annual A CM Symposium on Principles of Programming Languages,
pages 81- 94, 1990.

[BC85] J. L. Bates and Robert L. Constable. Proofs as programs. ACM Transactions
on Programming Languages and Systems, 7(1):53- 71, 1985.

[BCH+oo] K. Birman, R. Constable, M. Hayden, J. Hickey, C. Kreitz, R. van Renesse,
0. Rodeh, and W . Vogels. The Horus and Ensemble projects: Accomplishments
and limitations. In DARPA Information Survivability Conference and Exposi
tion (DISCEX 2000}, pages 149-161, Hilton Head, SC, 2000. IEEE Computer
Society Press.

[BG03a] Andreas Blass and Yuri Gurevich. Abstract state machines capture parallel
algorithms. ACM Transactions on Computational Logic, 4(4) :578-651, 2003.

35

[BG03b] Andreas Blass and Yuri Gurevich. Algorithms: A quest for absolute defini
tions. Bulletin of the European Association for Theoretical Computer Science,
(81) :195- 225, 2003.

[BG05] Mark Bickford and David Gauspari. Scores: A programming logic for dis
tributed systems. Technical Report Technical Report 05-0007, ATC-NY, 2005.

[BGHP98] Andrew Barber, Philippa Gardner, Masahito Hasegawa, and Gordon D.
Plotkin. From action calculi to linear logic. In Mogens Nielsen and Wolf
gang Thomas, editors, Computer Science Logic, 11th International Workshop,
Annual Conference of the EA CSL, Aarhus, Denmark, August 23-29, 1997, Se
lected Papers, volume 1414 of Lecture Notes in Computer Science, pages 78-97.
Springer, 1998.

[BGS03] Marcel Becker, Limei Gilham, and Douglas R. Smith. Planware II: Synthesis
of schedulers for complex resource systems. Submitted for publication, 2003.

[BH99] Mark Bickford and Jason J. Hickey. Predicate transformers for infinite-state
automata in Nuprl type theory. In Proceedings of3rd Irish Workshop in Formal
Methods, 1999.

[BK vRC01] Mark Bickford, Christoph Kreitz, Rob bert van Renesse, and Robert Constable.
An experiment in formal design using meta-properties. In J. Lala, D. Mughan,
C. McCollum, and B. Witten, editors, DARPA Information Survivability Con
ference and Exposition II (DISCEX-II), volume II of IEEE Computer Society
Press, pages 100- 107, Anaheim, CA, 2001.

[BKvRL01] Mark Bickford, Christoph Kreitz, Robbert van Renesse, and Xiaoming Liu.
Proving hybrid protocols correct. In Richard Boulton and Paul Jackson, edi
tors, 14th International Conference on Theorem Proving in Higher Order Log
ics, volume 2152 of Lecture Notes in Computer Science, pages 105-120, Edin
burgh, Scotland, September 2001. Springer-Verlag.

[CAB+86a] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W . R. Cleaveland, J. F .
Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Mathe
matics with the Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

[CAB+86b] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J . F .
Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Mathe
matics with the Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

[CC99] Michel Charpentier and K. Mani Chandy. Towards a compositional approach
to the design and verification of distributed systems. In Jeannette Wing, Jim

36

[CE82]

[CH88]

[CK93]

[Cle99]

[CM88]

[Con71]

[Con02]

[dAH01]

[EC82]

[Esc01]

Woodcock, and J. Davies, editors , FM99: The World Congress in Formal Meth
ods in the Development of Computing Systems, volume 1708 of Lecture Notes
in Computer Science, pages 570- 589. Springer Verlag, 1999.

Edmund M. Clarke and E. Allen Emerson. Synthesis of synchronization skele
tons from branching time temporal logic. In Proc. Workshop on Logics of
Programs, volume 131 of Lecture Notes in Computer Science, pages 52-71.
Springer- Verlag, 1982.

Thierry Coquand and G. Huet . The calculus of constructions. Information and
Computation, 76:95- 120, 1988.

K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent ob
ject oriented programming notation. In Gul Agha, Peter Wegner, and Akinori
Yonezawa, editors, Research Directions in Concurrent Object-Oriented Pro
gramming, chapter 11 , pages 281- 313. MIT Press , Boston, 1993.

W. Rance Cleaveland, editor. !Jh International Conference on Tools and Algo
rithms for the Construction and Analysis of Systems, volume 1579 of Lecture
Notes in Computer Science. Springer, 1999.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison
Wesley, 1988.

Robert L. Constable. Constructive mathematics and automatic program writ
ers. In Proceedings of the IFIP Congress, pages 229- 233. North-Holland, 1971.

Robert L. Constable. Nai:ve computational type theory. In H. Schwichten
berg and R. Steinbriiggen, editors, Proof and System-Reliability, Proceedings
of International Summer School Marktoberdorf, July 24 to August 5, 2001, vol
ume 62 of NATO Science Series III, pages 213-260, Amsterdam, 2002. Kluwer
Academic Publishers.

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component
based design. In Proceedings of the First International Workshop on Embedded
Software{EMSOFT), volume 2211 of Lecture Notes in Computer Science, pages
148- 165. Springer-Verlag, 2001.

E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Programming,
2(3) :241- 266, 1982.

Robert Eschbach. A verification approach for distributed abstract state ma
chines. In PSI'02: Revised Papers from the 4th International Andrei Ershov
Memorial Conference on Perspectives of System Informatics, volume 2244 of
Lecture Notes in Computer Science, pages 109-115. Springer-Verlag, London,
UK, 2001.

37

[EvdMM98]

[FHMV97]

[GGV04]

[GM93]

[GPS01]

[GRS05]

[GSW96]

[GT97]

[GTL89]

[HalOO]

[Hey02]

[HF89]

[HLvR99]

[HM03]

Kai Engelhardt, Ron van der Meyden, and Yoram Moses. A program refinement
framework supporting reasoning about knowledge and time. In Jerzy Tiuryn,
editor, Proc. Foundations of Software Science and Computation Structures
{FOSSACS 2000), pages 114- 129, Berlin/New York, 1998. Springer-Verlag.

Ronald Fagin, Joseph Y. Halpern, Yoram. Moses, and Moshe Y. Vardi.
Knowledge-based programs. Distributed Computing, 10(4):199- 225 , 1997.

Uwe Glaesser, Yuri Gurevich, and Margus Veanes. Abstract communication
model for distributed systems. IEEE Transactions on Software Engineering,
30(7) :458-472, 2004.

Michael Gordon and Tom Melham. Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, Cambridge,
1993.

Cordell Green, Dusko Pavlovic, and Douglas R. Smith. Software productivity
through automation and design knowledge. In Software Design and Productivity
Workshop, 2001.

Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of
asml. Theoretical Computer Science, 343(3):370- 412, October 2005.

Carla P. Gomes, Douglas R. Smith, and Stephen J . Westfold. Synthe
sis of schedulers for planned shutdowns of power plants. In Proceedings of
the Eleventh Knowledge-Based Software Engineering Conference, pages 12-20.
IEEE Computer Society Press, 1996.

V. K. Garg and A. I. Tomlinson. Using the causal domain to specify and verify
distributed programs. Acta Informatica, pages 667- 686, 1997.

J-Y. Girard, P. Taylor, andY. Lafont. Proofs and Types, volume 7 of Cambridge
Tracts in Computer Science. Cambridge University Press, 1989.

Joseph Y. Halpern. A note on knowledge-based programs and specifications.
Distributed Computing, 13(3) :145-153, 2000.

Anthony J.G. Hey. Feynman & Computation. Westview Press, Boulder, 2002.

Joseph Y. Halpern and Ronald Fagin. Modeling knowledge and action in dis
tributed systems. Distributed Computing, 3(4) :159- 177, 1989.

Jason J. Hickey, Nancy Lynch, and Robbert van Renesse. Specifications and
proofs for Ensemble layers. In Cleaveland [Cle99], pages 119- 133.

D. Harel and R. Marelly. Come, Let's Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer-Verlag, New York, 2003.

38

[Hoa85]

[HS99]

[HvR97]

[Isa]

[KHH98]

[KM94]

[Kre99]

[Kre03]

[KRS99]

[KW01]

[Lam78]

[Lam93]

[Lam94]

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Joseph Y. Halpern and Richard A. Shore. Reasoning about common knowledge
with infinitely many agents. In Proceedings of the 14th IEEE Symposium on
Logic in Computer Science, pages 384-393, 1999.

Mark Hayden and Robbert van Renesse. Optimizing layered communication
protocols. In Proceedings of the High Performance Distributed Computing,
Portland, Oregon, August 1997.

Isabelle home page. http: I lwWVJ. cl. cam. ac. ukiResearchiHVGIIsabelle.

Christoph Kreitz, Mark Hayden, and Jason J. Hickey. A proof environment
for the development of group communications systems. In Fifteen Interna
tional Conference on Automated Deduction, number 1421 in Lecture Notes in
Artificial Intelligence, pages 317-332. Springer, 1998.

K. Koskimies and E. Makinen. Automatic synthesis of state machines from
trace diagrams. Software-Practice and Experience, 24(7):643-658, 1994.

Christoph Kreitz. Automated fast-track reconfiguration of group communica
tion systems. In Cleaveland [Cle99], pages 104-118.

Christoph Kreitz. The FDL navigator: Browsing and manipulating formal
content. Cornell University, Ithaca, NY, 2003. http: I IWWVJ. nuprl. orgl
documents1Kreitzl03fdl-navigator.html.

S. S. Kulkarni, J. Rushby, and N. Shankar. A case-study in component-based
mechanical verification of fault-tolerant programs. In A. Arora, editor, Pro
ceedings of the 19th IEEE International Conference on Distributed Computing
Systems Workshop on Self-Stabilizing Systems, Austin, TX, pages 33-40. IEEE
Computer Society Press, 1999.

J. Klose and H. Wittke. An automata based interpretation of live sequence
charts. In Proceedings of Seventh International Coference on Tools and Algo
rithms for the Construction and Analysis of Systems (TACAS'01}, 2001.

Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Comms. ACM, 21(7):558-65, 1978.

Leslie Lamport. Hybrid systems in TLA+. In Grossman, Nerode, Ravn, and
Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in Computer
Science, 1993.

Leslie Lamport. The temporal logic of actions. A CM Transactions on Pro
gramming Languages and Systems, 16(3):872-923, 1994.

39

[Lam03] Leslie Lamport. Specifying Systems: The TLA + Language and Tools for Hard
ware and Software Engineers. Addison-Wesley, Boston, 2003.

[LKvR+99] Xiaoming Liu, Christoph Kreitz , Robbert van Renesse, Jason J . Hickey, Mark
Hayden, Kenneth Birman, and Robert Constable. Building reliable, high
performance communication systems from components. In David Kotz and
John Wilkes , editors , rlh ACM Symposium on Operating Systems Principles
(SOSP'99) , volume 33(5) of Operating Systems Review, pages 80- 92. ACM
Press , DIGITAL Systems Research Center 1999.

[LRSA02] J. Loyall, P. Rubel, R. Schantz, and M. Atighetc. Emerging patterns in adap
t ive, distributed real-time, embedded middleware. In Weerasak Witthawaskul ,
editor, 9th Conference of Pattern Language of Programs, 2002.

[LT89] Nancy Lynch and Mark Tuttle. An introduction to Input/Output automata.
Centrum voor Wiskunde en Informatica, 2(3):219-246, September 1989.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

[Mes03] Jos 'e Meseguer. Software specification and verification in rewriting logic. Un
published, 2003.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall , London, 1989.

[Mil93a] Robin Milner. Higher-order action calculi. In Egon Borger, Yuri Gurevich, and
Karl Meinked, editors , Computer Science Logic, volume 832 of Lecture Notes
in Computer Science, pages 238-260, 1993.

[Mil93b] Robin Milner. Structures for the >.-calculus action structures. University of
Edinburgh, Edinburgh, UK , August 1993. Marktoberdorf.

[Mil94] R. Milner. Action structures and the 1r-calculus. In Helmut Schwichtenberg,
editor, Proof and Computation, volume 139 of NATO Advanced Study Institute,
International Summer School held in Marktoberdorf, Germany, July 20- August
1, 1993, NATO Series F, pages 219-280. Springer, Berlin, 1994.

[Mil96] Robin Milner. Calculi for interaction. Acta Informatica, 33(8):707-737, 1996.

[Mis01] Jayadev Misra. A Discipline of Multiprogramming. Springer Verlag, 2001.

[ML82] Per Martin-Lof. Constructive mathematics and computer programming. In
Proceedings of the Sixth International Congress for Logic, Methodology, and
Philosophy of Science, pages 153- 175, Amsterdam, 1982. North Holland.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, Berlin, 1992.

40

[MP95]

[Mur91]

[MW84]

[NPS90]

[NPW02]

[NSS57]

[Pau88]

[Pau99]

[PN90]

[PS03a]

[PS03b]

[QS98]

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, Berlin, 1995.

Chetan Murthy. An evaluation semantics for classical proofs. In Proceedings
of Sixth Symposium on Logic in Comp. Sci., pages 96-109. IEEE, Amsterdam,
The Netherlands, 1991.

Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Trans. Program. Lang. and Syst., 6(1):68- 93, 1984.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin
Lof's Type Theory. Oxford Sciences Publication, Oxford, 1990.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. /sabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

A. Newell, J .C. Shaw, and H.A. Simon. Empirical explorations with the logic
theory machine: A case study in heuristics. In Proceedings West Joint Com
puter Conference, pages 218- 239, 1957.

L.C. Paulson. A preliminary user's manual for Isabelle. Technical Report 133,
University of Cambridge, Cambridge, England, 1988.

Lawrence C. Paulson. Mechanizing UNITY in isabelle. A CM Transactions on
Computational Logic, 1999.

L. Paulson and T. Nipkow. Isabelle tutorial and user's manual. Technical report,
University of Cambridge Computing Laboratory, 1990.

Dusko Pavlovic and Douglas R. Smith. Software development by refinement.
In Bernhard K. Aichernig and T . S. E. Maibaum, editors, UNU /IIST 1Oth
Anniversary Colloquium, Formal Methods at the Crossroads: From Panaea
to Foundational Support, volume 2757 of Lecture Notes in Computer Science,
pages 267- 286. Springer, 2003.

Dusko Pavlovic and Douglas R. Smith. Software development by refinement.
In Bernhard K. Aichernig and T . S. E. Maibaum, editors, UNU /liST 1Oth
Anniversary Colloquium, Formal Methods at the Crossroads: From Panaea
to Foundational Support, volume 2757 of Lecture Notes in Computer Science,
pages 267-286. Springer, 2003.

Shaz Qadeer and Natarajan Shankar. Verifying a self-stabilizing mutual exclu
sion algorithm. In David Gries and Willem-Paul de Roever, editors, IFIP Inter
national Conference on Programming Concepts and Methods : PROCOMET'98,
pages 424- 443, Shelter Island, NY, June 1998. Chapman & Hall.

41

[Sch97] Fred B. Schneider. On Concurrent Programming. Springer-Verlag, New York,
1997.

[SG96] Douglas R. Smith and Cordell Green. Toward practical applications of software
synthesis. In FMSP'g6, The First Workshop on Formal Methods in Software
Practice, pages 31-39., 1996.

[SL90] D.R. Smith and M.R. Lowry. Algorithm theories and design tactics. Science of
Computer Programming, 14(2- 3):305-321, October 1990. Report KES.U.89.3,
Kestrel Institute.

[TMOl] Laurent Thery. A machine-checked implementation of Buchberger's algorithm.
Journal of Automated Reasoning, 26(2):107-137, February 2001.

[Tur37] A. M. Turing. On computable numbers, with an application to the Entschei
dungs problem. In Proceedings London Math Society, pages 116- 154, 1937.

[Var95] M. Y. Vardi. An automata-theoretic approach to fair realizability and synthe
sis. In P. Wolper, editor, Computer Aided Verification, Proceedings of the 7th
International Conference, volume 939 of Lecture Notes in Computer Science,
pages 267-292. Springer-Verlag, 1995.

[vRBH+98] Robbert van Renesse, Kenneth P. Birman, Mark Hayden, Alexey Vaysburg,
and David Karr. Building adaptive systems using Ensemble. Software: Practice
and Experience, 28(9):963-979, July 1998.

[Whe82] John A. Wheeler. The computer and the universe. Int. J. Theoretical Physics,
21 :557- 571, 1982.

[Whe89] John A. Wheeler. Information, physics, quantum: The search for links. In
Proc. 3d Int. Symp. Foundations of Quantum Mechanics, Tokyo, 1989.

[Win80] G. Winskel. Events in Computation. PhD thesis, University of Edinburgh,
1980.

[Win89] G. Winskel. An introduction to event structures. In J. W . de Bakker et al.,
editors, Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, number 345 in Lecture Notes in Computer Science, pages
364-397. Springer, 1989.

[ZdRvEB85] Job Zwiers, Willem P. de Roever, and Peter van Emde Boas. Compositionality
and concurrent networks: Soundness and completeness of a proofsystem. In
ICALP Jg8s, pages 509- 519, 1985.

42

